Specific activity of phosphatidylinositol 3-kinase is increased by insulin stimulation.

نویسندگان

  • M Okamoto
  • T Hayashi
  • S Kono
  • G Inoue
  • M Kubota
  • M Okamoto
  • H Kuzuya
  • H Imura
چکیده

We investigated whether phosphatidylinositol 3-kinase (PI3K) is phosphorylated and whether its specific activity is increased by insulin stimulation in vivo using Fao cells and antibodies raised against the 85 kDa subunit of PI3K, insulin-receptor substrate-1 (IRS-1), and phosphotyrosine (pTyr). PI3K activity was detected in the immunoprecipitate produced with anti-PI3K at a basal state. The activity was increased 2-3-fold by insulin stimulation, although the protein concentration of kinase in the anti-PI3K immunoprecipitates was the same before and after insulin stimulation. Both anti-pTyr and anti-IRS-1 antibodies immunoprecipitated the kinase activity only after insulin stimulation. After the first immunoprecipitation with anti-pTyr, the supernatant was immunoprecipitated once more with anti-PI3K. PI3K activity in the second immunoprecipitate revealed little difference between the basal and insulin-stimulated states, suggesting that most of the insulin-activated portion of PI3K was precipitated by anti-pTyr. Both IRS-1 and the insulin-receptor beta-subunit (95 kDa) were phosphorylated on tyrosine residues by insulin stimulation and immunoprecipitated with anti-pTyr. However, phosphorylation of neither subunit of PI3K (85 kDa or 110 kDa) was detectable in the immunoprecipitate produced with anti-pTyr. The 185 kDa pTyr-containing protein was immunoprecipitated with anti-PI3K after insulin stimulation, although there was little phosphorylation of the 85 kDa protein. pTyr in the 110 kDa protein immunoprecipitated with anti-PI3K was below detectable levels. These results indicate that the specific activity of PI3K is increased by insulin stimulation without detectable tyrosine phosphorylation of PI3K itself in Fao cells. The majority of the insulin-activated portion of PI3K is associated with pTyr-containing proteins including IRS-1, which suggests that this is important for activation of PI3K by insulin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus.

Insulin stimulates tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), which in turn binds to and activates phosphatidylinositol 3-kinase (PI 3-kinase). In the present study, we have examined these processes in animal models of insulin-resistant and insulin-deficient diabetes mellitus. After in vivo insulin stimulation, there was a 60-80% decrease in IRS-1 phosphorylation in liver...

متن کامل

Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin.

Protein kinase C-zeta (PKC-zeta) is a serine/threonine kinase downstream from phosphatidylinositol 3-kinase in insulin signaling pathways. However, specific substrates for PKC-zeta that participate in the biological actions of insulin have not been reported. In the present study, we identified insulin receptor substrate-1 (IRS-1) as a novel substrate for PKC-zeta. Under in vitro conditions, wil...

متن کامل

Dexamethasone enhances insulin-like growth factor-I effects on skeletal muscle cell proliferation. Role of specific intracellular signaling pathways.

IGF-I stimulation of cell proliferation and c-Fos expression in skeletal muscle cells is markedly enhanced by dexamethasone. The effect of dexamethasone is not mediated by changes in IGF-binding proteins, as evidenced by similar effects of dexamethasone on the actions of insulin, PDGF-BB, and the IGF-I analogue long R3IGF-I. Dexamethasone also does not alter autocrine IGF-II secretion by muscle...

متن کامل

Impaired muscle glycogen synthase in type 2 diabetes is associated with diminished phosphatidylinositol 3-kinase activation.

Insulin signaling pathways potentially involved in regulation of skeletal muscle glycogen synthase were compared in differentiated human muscle cell cultures from nondiabetic and type 2 diabetic patients. Insulin stimulation of glycogen synthase activity as well as phosphorylation of MAPK, p70 S6 kinase, and protein kinase B (Akt) were blocked by the phosphatidylinositol 3-kinase inhibitors wor...

متن کامل

Phosphorylation in vitro of the 85 kDa subunit of phosphatidylinositol 3-kinase and its possible activation by insulin receptor tyrosine kinase.

Insulin causes a dramatic and rapid increase in phosphatidylinositol 3-kinase activity in the anti-phosphotyrosine immunoprecipitates of cells overexpressing the human insulin receptor. This enzyme may therefore be a mediator of insulin signal transduction [Endemann, Yonezawa & Roth (1990) J. Biol. Chem. 265, 396-400; Ruderman, Kapeller, White & Cantley (1990) Proc. Natl. Acad. Sci. U.S.A. 87, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 290 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1993